## Numerical Integration (Gauss-Legendre Two Point Formula)

#### Compiled by

Dr. Shyam Arjun Sonawane Associate Professor, Mechanical Engineering

Government College of Engineering & Research, Avasari (Kh)

### What is Integration ?

• The process of measuring the area under a function plotted on a graph.

$$I = \int_{a}^{b} f(x) dx$$

- Where:
- *f*(*x*) is the integrand
- a= lower limit of integration
- b= upper limit of integration



#### Limitations of Newton-Cotes Formula

- When we calculate integration by Newton-Cotes method, the area is divided in number of strips with step size h.
- The formula includes y values (function values) at the corresponding x values.
- But for complicated equations it becomes difficult to find function values.
- As more processing time is required, computer program also becomes inefficient.
- If we reduce the number of strips, number of function values will be less. But, this affects the accuracy of the solution.
- This limitation of Newton-Cotes equation is overcome by Gauss-Legendre quadrature method.

#### Gauss-Legendre Quadrature Method

This method converts the function variable f(x) to a function variable f(u) such that the original limits  $x_0$  and  $x_n$  gets changed to (-1) and (+1) respectively whereas the area under the curve f(x) and f(u) remains same. Refer figure (a) and (b)



#### Gauss-Legendre Quadrature Method .....Contd

For figure (a) the function is written as,  $I = \int_{x_0}^{x_n} f(x) dx$ Similarly for figure (b) the function is written as,  $I = \int_{-1}^{+1} f(u) du$ Assuming linear relationship between x and u, let the relation be,

From figures (a) & (b), at  $x = x_0$ , u=-1

at  $x = x_n$ , u=1

$$x_n = C + d$$
 ......(3)

Solving eq. (2) & (3), we get

$$C = \frac{x_n - x_0}{2} \& d = \frac{x_n + x_0}{2}$$

#### Gauss-Legendre Quadrature Method .....Contd

Now differentiating eq. (1) dx = C. du

The transformation from f(x) to f(u) can be obtained by substituting x = Cu + d and dx = C.du in the given function

$$\int_{x_0}^{x_n} f(x) dx = \int_{-1}^{+1} f(Cu+d) \cdot C \cdot du$$
$$C \int_{-1}^{+1} f(Cu+d) du$$
$$C = \frac{x_n - x_0}{2} \otimes d = \frac{x_n + x_0}{2}$$

As we have transferred f(x) equivalent to f(u), the problem has reduced to find area bounded by y=f(u), u=-1, u=+1 and y=0. The solution can be given in series form as,

$$I = \int_{-1}^{+1} f(u) du = \sum_{i=0}^{n} \lambda_i f(u_i) \dots \dots (4)$$

where  $\lambda_i$ =weights of integration.

As per the accuracy level, we can consider few terms of the series solution. The obtained equation are called as two point formula and three point formula.

#### Gauss-Legendre Two Point Formula

For two point formula first two terms of series solution are considered. Hence eq. (4) i.e.  $\int_{-1}^{+1} f(u) du = \sum_{i=0}^{n} \lambda_i f(u_i) \text{ becomes,}$   $\int_{-1}^{+1} f(u) du = \lambda_0 f(u_0) + \lambda_1 f(u_1) \dots \dots \dots (5)$ 

To find the value of four unknown  $\lambda_0$ ,  $\lambda_1$ ,  $u_0$  and  $u_1$  four equations are required. To find four unknown we substitute f(u) by  $1, u, u^2$  and  $u^3$  respectively

(a) for 
$$f(u) = 1$$
,  $f(u_0) = 1$  and  $f(u_1) = 1$ , substitute in eq. (5)  

$$\int_{-1}^{+1} 1. du = \lambda_0.1 + \lambda_1.1$$

$$2 = \lambda_0 + \lambda_1 \dots \dots \dots (6)$$
(b) for  $f(u) = u$ ,  $f(u_0) = u_0$  and  $f(u_1) = u_1$ , substitute in eq. (5)  

$$\int_{-1}^{+1} u. du = \lambda_0. u_0 + \lambda_1. u_1$$

$$0 = \lambda_0. u_0 + \lambda_1. u_1 \dots \dots (7)$$

(c) for 
$$f(u) = u^2$$
,  $f(u_0) = u_0^2$  and  $f(u_1) = u_1^2$ , substitute in eq. (5)  

$$\int_{-1}^{+1} u^2 du = \lambda_0 \cdot u_0^2 + \lambda_1 \cdot u_1^2$$

$$\frac{2}{3} = \lambda_0 \cdot u_0^2 + \lambda_1 \cdot u_1^2 \dots \dots \dots (8)$$
(d) for  $f(u) = u^3$ ,  $f(u_0) = u_0^3$  and  $f(u_1) = u_1^3$ , substitute in eq. (5)  

$$\int_{-1}^{+1} u^3 du = \lambda_0 \cdot u_0^3 + \lambda_1 \cdot u_1^3$$

$$0 = \lambda_0 \cdot u_0^3 + \lambda_1 \cdot u_1^3 \dots \dots (9)$$

Solving eq. (6), (7), (8) and (9) we get

$$\lambda_0 = 1, \lambda_1 = 1, u_0 = \left(\frac{-1}{\sqrt{3}}\right)$$
 and  $u_1 = \left(\frac{1}{\sqrt{3}}\right)$ 

Substituting these values in eq. (5)

$$\int_{-1}^{+1} f(u) du = 1.f(\frac{-1}{\sqrt{3}}) + 1.f(\frac{1}{\sqrt{3}})$$

Which can be written as,

$$\int_{x_0}^{x_n} f(x)dx = \int_{-1}^{+1} f(u)du = f(\frac{-1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

The above equation is called as Gauss-Legendre Two Point Formula.

To find the integration by Gauss-Legendre Two Point Formula use following steps

1) Write the given function in the form of  $I = \int_{x_0}^{x_n} f(x) dx$ 

- 2) Calculate the values of 'C' and 'd' by using relation  $C = \frac{x_n x_0}{2} \& d = \frac{x_n + x_0}{2}$
- 3) Calculate the two values of x i.e.  $x_1$  and  $x_2$  and corresponding values of y by using relation,

$$\begin{aligned} x_1 &= C\left(\frac{1}{\sqrt{3}}\right) + d \quad \text{and} \ x_2 &= -C\left(\frac{1}{\sqrt{3}}\right) + d \\ y_1 &= f(x_1) \quad \text{and} \ y_2 &= f(x_2) \end{aligned}$$

4) Calculate the area under the curve by using  $A = (y_1 + y_2).C$ 

**Example:** Compute the integral  $I = \int_{-2}^{2} (e^{-x/2}) dx$  using Gauss two point formula. **Solution:**  $f(x) = (e^{-x/2})$ ,  $x_0 = -2$ ,  $x_n = 2$ 

Step 1: Calculate the value of C and d

$$C = \frac{x_n - x_0}{2} = \frac{2 - (-2)}{2} = 2$$
$$d = \frac{x_n + x_0}{2} = \frac{2 + (-2)}{2} = 0$$

Step 2: Calculate the value of  $x_1$  and  $x_2$ 

$$x_{1} = C\left(\frac{1}{\sqrt{3}}\right) + d = \left(\frac{2}{\sqrt{3}}\right) + 0 = 1.1547$$
$$x_{2} = -C\left(\frac{1}{\sqrt{3}}\right) + d = \left(\frac{-2}{\sqrt{3}}\right) + 0 = -1.1547$$

Step 3: Calculate the value of 
$$y, y = f(x) = (e^{-x/2})$$
  
 $y_1 = (e^{-x_1/2}) = e^{-1.1547/2} = 0.56138$   
 $y_2 = (e^{-x_2/2}) = e^{-(-1.1547)/2} = 1.7813$ 

Step 4: Calculate the area under the curve (A)  $A = (y_1 + y_2).C = (0.56138 + 1.7813)x2 = 4.6853$   $I = \int_{-2}^{2} (e^{-x/2})dx = 4.6853$ 

# Problems on Gauss-Legendre two point formula

- 1. Compute the integral  $\int_0^1 (4 + 2\cos x) dx$  using Gauss-Legendre two point formula.
- 2. Find the integration  $\int_0^2 (x^2 3x + 2) dx$  using Gauss-Legendre two point formula.
- 3. Evaluate  $\int_0^1 (xe^x) dx$  using Gauss-Legendre two point formula.
- 4. Find the integration  $x^3 + x 1$  with limits 1 to 4 using Gauss-Legendre two point formula.

# Problems on Gauss-Legendre two point formula .....Contd

- 5. Compute the integral  $\int_0^1 (\frac{\cos x x}{1 + x}) dx$  using Gauss-Legendre two point formula.
- 6. Compute the integral  $\int_{2}^{3} \left(\frac{x^{3}-4x+2}{\ln x}\right) dx$  using Gauss-Legendre two point formula.
- 7. Compute the integral  $\int_{-1}^{1} (x^3 6x + 13) dx$  using Gauss-Legendre two point formula.

#### **Reference Books**

1. Steven C. Chapra, Raymond P. Canale, Numerical Methods for Engineers, 4/e, Tata McGraw Hill Editions

2. Dr. B. S. Garewal, Numerical Methods in Engineering and Science, Khanna Publishers,.

3. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientist, Tata Mc-Graw Hill Publishing Co-Ltd

4. Rao V. Dukkipati, Applied Numerical Methods using Matlab, New Age International Publishers

#### **Reference Books**



5. Gerald and Wheatley, Applied Numerical Analysis, Pearson Education Asia

- 6. E. Balagurusamy, Numerical Methods, Tata McGraw Hill
- 7. P. Thangaraj, Computer Oriented Numerical Methods, PHI
- 8. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI.

Thank You

## Numerical Integration (Gauss-Legendre Three Point Formula)

#### Compiled by

Dr. Shyam Arjun Sonawane Associate Professor, Mechanical Engineering

Government College of Engineering & Research, Avasari (Kh)

### What is Integration ?

• The process of measuring the area under a function plotted on a graph.

$$I = \int_{a}^{b} f(x) dx$$

- Where:
- *f*(*x*) is the integrand
- a= lower limit of integration
- b= upper limit of integration



#### Limitations of Newton-Cotes Formula

- When we calculate integration by Newton-Cotes method, the area is divided in number of strips with step size h.
- The formula includes y values (function values) at the corresponding x values.
- But for complicated equations it becomes difficult to find function values.
- As more processing time is required, computer program also becomes inefficient.
- If we reduce the number of strips, number of function values will be less. But, this affects the accuracy of the solution.
- This limitation of Newton-Cotes equation is overcome by Gauss-Legendre quadrature method.

#### Gauss-Legendre Quadrature Method

This method converts the function variable f(x) to a function variable f(u) such that the original limits  $x_0$  and  $x_n$  gets changed to (-1) and (+1) respectively whereas the area under the curve f(x) and f(u) remains same. Refer figure (a) and (b)



#### Gauss-Legendre Quadrature Method .....Contd

For figure (a) the function is written as,  $I = \int_{x_0}^{x_n} f(x) dx$ Similarly for figure (b) the function is written as,  $I = \int_{-1}^{+1} f(u) du$ Assuming linear relationship between x and u, let the relation be,

From figures (a) & (b), at  $x = x_0$ , u=-1

at  $x = x_n$ , u=1

$$x_n = C + d$$
 ......(3)

Solving eq. (2) & (3), we get

$$C = \frac{x_n - x_0}{2} \& d = \frac{x_n + x_0}{2}$$

#### Gauss-Legendre Quadrature Method .....Contd

Now differentiating eq. (1) dx = C. du

The transformation from f(x) to f(u) can be obtained by substituting x = Cu + d and dx = C.du in the given function

$$\int_{x_0}^{x_n} f(x) dx = \int_{-1}^{+1} f(Cu+d) \cdot C \cdot du$$
$$C \int_{-1}^{+1} f(Cu+d) du$$
$$C = \frac{x_n - x_0}{2} \otimes d = \frac{x_n + x_0}{2}$$

As we have transferred f(x) equivalent to f(u), the problem has reduced to find area bounded by y=f(u), u=-1, u=+1 and y=0. The solution can be given in series form as,

$$I = \int_{-1}^{+1} f(u) du = \sum_{i=0}^{n} \lambda_i f(u_i) \dots \dots (4)$$

where  $\lambda_i$ =weights of integration.

As per the accuracy level, we can consider few terms of the series solution. The obtained equation are called as Three Point formula and three point formula.

#### **Gauss-Legendre Three Point Formula**

For three point formula first three terms of series solution are considered. Hence eq. (4) i.e.  $\int_{-1}^{+1} f(u) du = \sum_{i=0}^{n} \lambda_i f(u_i) \text{ becomes},$   $\int_{-1}^{+1} f(u) du = \lambda_0 f(u_0) + \lambda_1 f(u_1) + \lambda_2 f(u_2) \dots \dots \dots (5)$ 

To find the value of six unknown  $\lambda_0$ ,  $\lambda_1$ ,  $\lambda_2$   $u_0$ ,  $u_1$  and  $u_2$  six equations are required. To find six unknown we substitute f(u) by 1, u,  $u^2$ ,  $u^3$ ,  $u^4$  and  $u^5$  respectively

(a) for 
$$f(u) = 1$$
,  $f(u_0) = 1$ ,  $f(u_1) = 1$  and  $f(u_2) = 1$ , substitute in eq. (5)  

$$\int_{-1}^{+1} 1 du = \lambda_0 \cdot 1 + \lambda_1 \cdot 1 + \lambda_2 \cdot 1$$

$$2^{-1} = \lambda_0 + \lambda_1 + \lambda_2 \dots \dots \dots (6)$$
(b) for  $f(u) = u$ ,  $f(u_0) = u_0$ ,  $f(u_1) = u_1$  and  $f(u_2) = u_2$ , substitute in eq. (5)  

$$\int_{-1}^{+1} u du = \lambda_0 \cdot u_0 + \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2$$

$$0 = \lambda_0 \cdot u_0 + \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 \dots \dots (7)$$

(c) for 
$$f(u) = u^2$$
,  $f(u_0) = u_0^2$ ,  $f(u_1) = u_1^2 and f(u_2) = u_2^2$ , substitute in eq. (5)  

$$\int_{-1}^{+1} u^2 du = \lambda_0 \cdot u_0^2 + \lambda_1 \cdot u_1^2 + \lambda_2 \cdot u_2^2$$

$$\frac{2}{3} = \lambda_0 \cdot u_0^2 + \lambda_1 \cdot u_1^2 + \lambda_2 \cdot u_2^2 \dots \dots \dots (8)$$
(d) for  $f(u) = u^3$ ,  $f(u_0) = u_0^3$ , and  $f(u_1) = u_1^3 and f(u_2) = u_2^3$ , substitute in eq. (5)  

$$\int_{-1}^{+1} u^3 du = \lambda_0 \cdot u_0^3 + \lambda_1 \cdot u_1^3 + \lambda_2 \cdot u_2^3$$

$$0 = \lambda_0 \cdot u_0^3 + \lambda_1 \cdot u_1^3 + \lambda_2 \cdot u_2^3 \dots \dots \dots (9)$$
(e) for  $f(u) = u^4$ ,  $f(u_0) = u_0^4$ , and  $f(u_1) = u_1^4 and f(u_2) = u_2^4$ , substitute in eq. (5)  

$$\int_{-1}^{+1} u^4 du = \lambda_0 \cdot u_0^4 + \lambda_1 \cdot u_1^4 + \lambda_2 \cdot u_2^4$$

$$\frac{2}{5} = \lambda_0 \cdot u_0^4 + \lambda_1 \cdot u_1^4 + \lambda_2 \cdot u_2^4 \dots \dots \dots (10)$$

(f) for  $f(u) = u^5$ ,  $f(u_0) = u_0^5$ , and  $f(u_1) = u_1^5$  and  $f(u_2) = u_2^5$ , substitute in eq. (5)  $\int_{-1}^{+1} u^5 \, du = \lambda_0 \, u_0^5 + \lambda_1 \, u_1^5 + \lambda_2 \, u_2^5$  $0 = \lambda_0 \, u_0^5 + \lambda_1 \, u_1^5 + \lambda_2 \, u_2^5 \, \dots \, \dots \, (11)$ Solving eq. (6), (7), (8), (9), (10) and (11) we get  $\lambda_0 = \left(\frac{5}{9}\right), \lambda_1 = \left(\frac{8}{9}\right), \lambda_1 = \left(\frac{5}{9}\right), u_0 = \left(-\sqrt{\frac{3}{5}}\right), u_1 = 0 \text{ and } u_2 = \left(\sqrt{\frac{3}{5}}\right)$ Substituting these values in eq. (5)

$$\int_{-1}^{+1} f(u) du = \frac{5}{9} \cdot f(-\sqrt{\frac{3}{5}}) + \frac{8}{9} \cdot f(0) + \frac{5}{9} \cdot f(\sqrt{\frac{3}{5}})$$

Which can be written as,

$$\int_{x_0}^{x_n} f(x) dx = \int_{-1}^{1} f(u) du = \frac{5}{9} \cdot f(-\sqrt{\frac{3}{5}}) + \frac{8}{9} \cdot f(0) + \frac{5}{9} \cdot f(\sqrt{\frac{3}{5}})$$

The above equation is called as Gauss-Legendre Three Point Formula.

To find the integration by Gauss-Legendre Three Point Formula use following steps

- 1) Write the given function in the form of  $I = \int_{x_0}^{x_n} f(x) dx$
- 2) Calculate the values of 'C' and 'd' by using relation  $C = \frac{x_n x_0}{2} \& d = \frac{x_n + x_0}{2}$
- 3) Calculate the three values of x i.e.  $x_1$ ,  $x_2$  and  $x_3$  and corresponding values of y by using relation,

$$x_{1} = C\left(\sqrt{\frac{3}{5}}\right) + d , x_{2} = -C\left(\sqrt{\frac{3}{5}}\right) + d \text{ and } x_{3} = C(0) + d = d$$
  
$$y_{1} = f(x_{1}), \quad y_{2} = f(x_{2}) \text{ and } y_{3} = f(x_{3})$$

4) Calculate the area under the curve by using

$$A = \left[\frac{5}{9}(y_1 + y_2) + \frac{8}{9}(y_3)\right].C$$

**Example:** Find integration of  $e^x cos x - 2x$  in limits 0 to 1 by using Three Point Gauss-Legendre formula. **Solution:**  $f(x) = (e^x cos x - 2x)$ ,  $x_0=0$ ,  $x_n=1$ 

Step 1: Calculate the value of C and d

$$C = \frac{x_n - x_0}{2} = \frac{1 - (0)}{2} = 0.5$$
$$d = \frac{x_n + x_0}{2} = \frac{1 + (0)}{2} = 0.5$$

Step 2: Calculate the value of  $x_1$ ,  $x_2$  and  $x_3$ 

$$x_{1} = C\left(\sqrt{\frac{3}{5}}\right) + d = 0.5\left(\sqrt{\frac{3}{5}}\right) + 0.5 = 0.8872$$
$$x_{2} = -C\left(\sqrt{\frac{3}{5}}\right) + d = -0.5\left(\sqrt{\frac{3}{5}}\right) + 0.5 = 0.1127$$
$$x_{3} = d = 0.5$$

Step 3: Calculate the value of 
$$y, y = f(x) = (e^x \cos x - 2x)$$
  
 $y_1 = (e^{x_1} \cos x_1 - 2x_1) = (e^{0.8872} \cos 0.8872 - 2(0.8872)) = -0.2407$   
 $y_2 = (e^{x_2} \cos x_2 - 2x_2) = (e^{0.1127} \cos 0.1127 - 2(0.1127)) = 0.8867$   
 $y_3 = (e^{x_3} \cos x_3 - 2x_3) = (e^{0.5} \cos 0.5 - 2(0.5)) = 0.4468$ 

**Step 4: Calculate the area under the curve (A)** 

$$A = \left[\frac{5}{9}(y_1 + y_2) + \frac{8}{9}(y_3)\right].C$$
$$= \left[\frac{5}{9}(-0.2407 + 0.8867) + \frac{8}{9}(0.4468)\right].0.5$$

$$A = \int_0^1 (e^x \cos x - 2x) dx = 0.37802$$

# Problems on Gauss-Legendre Three Point formula

- 1. Using Gauss-Legendre Three Point formula  $\int_{3}^{5} (x^2 5x + 2) dx$ .
- 2. Find the integration  $\int_0^2 (e^x + 4x 3) dx$  using Gauss-Legendre Three Point formula.
- 3. Evaluate  $\int_0^1 (\frac{1}{1+x^2}) dx$  using Gauss-Legendre Three Point formula.
- 4. Find the integration  $\int_0^4 (x^3 \cos x + 6) dx$  using Gauss-Legendre Three Point formula.

### Problems on Gauss-Legendre Three Point formula .....Contd

- 5. Compute the integral  $\int_0^{\pi/2} (e^{\sin x}) dx$  using Gauss-Legendre Three Point formula.
- 6. Use Three Point Gauss-Legendre formula to solve  $\int_0^3 (\frac{e^x}{1+x^2}) dx$ .
- 7. A fluid is confined in a cylinder by a spring loaded frictionless piston so that the pressure in the fluid is a linear function of volume P=a+bV where P is in Kpa, V is in m<sup>3</sup>,  $a=-60 \text{ kN/m^2}$ ,  $b=7667 \text{ kN/m^2}$ . If the fluid changes from initial condition of 0.03 m<sup>3</sup> to final volume of 0.06 m<sup>3</sup>. Find the magnitude of work transfer during the process using Gauss-Legendre 3 point formula.

#### **Reference Books**

1. Steven C. Chapra, Raymond P. Canale, Numerical Methods for Engineers, 4/e, Tata McGraw Hill Editions

2. Dr. B. S. Garewal, Numerical Methods in Engineering and Science, Khanna Publishers,.

3. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientist, Tata Mc-Graw Hill Publishing Co-Ltd

4. Rao V. Dukkipati, Applied Numerical Methods using Matlab, New Age International Publishers

#### **Reference Books**



5. Gerald and Wheatley, Applied Numerical Analysis, Pearson Education Asia

- 6. E. Balagurusamy, Numerical Methods, Tata McGraw Hill
- 7. P. Thangaraj, Computer Oriented Numerical Methods, PHI
- 8. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI.

Thank You

## Numerical Double Integration (Simpson's 1/3<sup>rd</sup> Rule)

#### Compiled by

Dr. Shyam Arjun Sonawane Associate Professor, Mechanical Engineering

Government College of Engineering & Research, Avasari (Kh)
## **Double Integration**

The double integration can be written as

$$A = \int_{x_0}^{x_n} \int_{y_0}^{y_n} f(x, y) dx \, dy$$

The value of integration can be found by two successive integration in x and y directions (by considering one variable at a time). In this case, the interval  $x_0$  to  $x_n$  is divided into 'n' equal subintervals with step size 'h' whereas the interval  $y_0$  to  $y_n$  is divided into 'm' equal subintervals with step size 'k'.

$$h = \frac{x_n - x_0}{n}$$
 and  $k = \frac{y_n - y_0}{m}$ 

The double integration can be found by using (1) Trapezoidal Rule (2) Simpson's Rule

Double integration is given by

$$A = \int_{x_0}^{x_n} \int_{y_0}^{y_n} f(x, y) dx \, dy$$

In the given equation if *n=m=*2 then,

$$A = \int_{x_0}^{x_2} \int_{y_0}^{y_2} f(x, y) dx \, dy$$

Initially integrating the above equation w.r.t. x

$$A = \int_{y_0}^{y_2} \frac{h}{3} [f(x_0, y) + 4f(x_1, y) + +f(x_2, y)] dy$$

Now integrating the above equation w.r.t. y

$$A = \frac{hk}{33}[f(x_0, y_0) + 4f(x_0, y_1) + f(x_0, y_2) + 4[f(x_1, y_0) + 4f(x_1, y_1) + f(x_1, y_2)] + f(x_2, y_0) + 4f(x_2, y_1) + f(x_2, y_2)]$$



$$A = \frac{h k}{3 3} [f(x_0, y_0) + f(x_0, y_2)) + f(x_2, y_0) + f(x_2, y_2) + 4 [f(x_0, y_1) + f(x_1, y_0) + f(x_1, y_2) + f(x_2, y_1)] + 16 f(x_1, y_1)]$$

When number of strips n=m=2, the table is prepared as follows

| x<br>y                | <i>x</i> <sub>0</sub> | $x_1 = x_0 + h$ | $x_2 = x_0 + 2h$ | x<br>y           | <i>x</i> <sub>0</sub> | $x_1 = x_0 + h$ | $x_2 = x_0 + 2h$ |
|-----------------------|-----------------------|-----------------|------------------|------------------|-----------------------|-----------------|------------------|
| <i>y</i> <sub>0</sub> | $f(x_0, y_0)$         | $f(x_1, y_0)$   | $f(x_2, y_0)$    | ${\mathcal Y}_0$ |                       |                 |                  |
| $y_1 = y_0 + k$       | $f(x_0, y_1)$         | $f(x_1, y_1)$   | $f(x_2, y_1)$    | $y_1 = y_0 + k$  |                       | A               |                  |
| $y_2 = y_0 + 2k$      | $f(x_0, y_2)$         | $f(x_1, y_2)$   | $f(x_2, y_2)$    | $y_2 = y_0 + 2k$ |                       |                 |                  |

٠



$$A = \frac{h}{3} \frac{k}{3} \left[ \sum f(x_i, y_i) + 4 \sum f(x_i, y_i) + 16 \sum f(x_i, y_i) \right]$$

Square terms Rhombus terms Remaining terms

For *n* number of strips prepare a table as follows

| x<br>y           | <i>x</i> <sub>0</sub> | $x_1 = x_0 + h$ | $x_2 = x_0 + 2h$ | $x_3 = x_0 + 3h$ | $x_4 = x_0 + 4h$ |
|------------------|-----------------------|-----------------|------------------|------------------|------------------|
| y <sub>0</sub>   | $f(x_0, y_0)$         | $f(x_1, y_0)$   | $f(x_2, y_0) =$  | $f(x_3, y_0)$    | $f(x_4, y_0)$    |
| $y_1 = y_0 + k$  | $f(x_0, y_1)$         | $f(x_1, y_1)$   | $ f(x_2, y_1) $  | $f(x_3, y_1)$    | • $f(x_4, y_1)$  |
| $y_2 = y_0 + 2k$ | $f(x_0, y_2)$         | $f(x_1, y_2)$   | $f(x_2, y_2)$    | $f(x_3, y_2)$    | $f(x_4, y_2)$    |
| $y_3 = y_0 + 3k$ | $f(x_0, y_3)$         | $f(x_1, y_3)$   | $ f(x_2, y_3) $  | $f(x_3, y_3)$    | $f(x_4, y_3)$    |
| $y_4 = y_0 + 4k$ | $f(x_0, y_4)$         | $f(x_1, y_4)$   | $f(x_2, y_4)$    | $f(x_3, y_4)$    | $f(x_4, y_4)$    |



The total area is given by

$$A = \frac{h k}{3 3} [A_1 + A_2 + A_3 + A_4]$$

Where

$$\begin{aligned} &A_1 \\ &= \left[ \left( f(x_0, y_0) + f(x_2, y_0) + f(x_2, y_2) + f(x_0, y_2) \right) \\ &+ 4 \left( f(x_1, y_0) + f(x_2, y_1) + f(x_1, y_2) + f(x_0, y_1) \right) + 16 f(x_1, y_1) \right] \\ &A_2 \\ &= \left[ \left( f(x_2, y_0) + f(x_4, y_0) + f(x_4, y_2) + f(x_2, y_2) \right) \\ &+ 4 \left( f(x_3, y_0) + f(x_4, y_1) + f(x_3, y_2) + f(x_2, y_1) \right) + 16 f(x_3, y_1) \right] \end{aligned}$$

Note:- While calculating area  $A_2$ , the terms in the 3<sup>rd</sup> column are repeated.



$$A_{3} = [(f(x_{0}, y_{2}) + f(x_{2}, y_{2}) + f(x_{2}, y_{4}) + f(x_{0}, y_{4})) + 4(f(x_{1}, y_{2}) + f(x_{2}, y_{3}) + f(x_{1}, y_{4}) + f(x_{0}, y_{3})) + 16f(x_{1}, y_{3})]$$

Note:- While calculating area  $A_3$  the term in the 3<sup>rd</sup> row are repeated.

$$A_4 = [(f(x_2, y_2) + f(x_4, y_2) + f(x_4, y_4) + f(x_2, y_4)) + 4(f(x_3, y_2) + f(x_4, y_3) + f(x_3, y_4) + f(x_2, y_3)) + 16f(x_3, y_3)]$$

Note:- While calculating area  $A_4$  the term in the 3<sup>rd</sup> row and 3<sup>rd</sup> column are repeated. The above equation gives the total area under the curve for double integration by Simpson's  $1/3^{rd}$  rule.



**Example:** Find the integral of  $f(x,y) = (x^2+y^2+5)$  for x=0 to 2 and y=0 to 2 taking increment in both x and y as 0.5 applying Simpson's 1/3<sup>rd</sup> rule. **Solution:**  $f(x, y) = (x^2+y^2+5), x_0=0, x_n=2, y_0=0, y_m=2, h=k=0.5$ **Step 1: Calculate the corresponding values of x and y wrt h & k** 

$$x_0 = 0$$
  

$$x_1 = x_0 + h = 0 + 0.5 = 0.5$$
  

$$x_2 = x_0 + 2h = 0 + 2(0.5) = 1.0$$
  

$$x_3 = x_0 + 3h = 0 + 3(0.5) = 1.5$$
  

$$x_4 = x_0 + 4h = 0 + 4(0.5) = 2.0$$

### ...Contd

$$y_0 = 0$$
  

$$y_1 = y_0 + k = 0 + 0.5 = 0.5$$
  

$$y_2 = y_0 + 2k = 0 + 2(0.5) = 1.0$$
  

$$y_3 = y_0 + 3k = 0 + 3(0.5) = 1.5$$
  

$$y_4 = y_0 + 4k = 0 + 4(0.5) = 2.0$$
  
**Step 2: Calculate the values of**  $f(x_i, y_i), f(x, y) = (x^2 + y^2 + 5)$ 

1)  $x_0$ =constant

$$f(x_0, y_0) = (x_0^2 + y_0^2 + 5) = (0 + 0 + 5) = 5$$
  

$$f(x_0, y_1) = (x_0^2 + y_1^2 + 5) = (0 + 0.5^2 + 5) = 5.25$$
  

$$f(x_0, y_2) = (x_0^2 + y_2^2 + 5) = (0 + 1^2 + 5) = 6$$
  

$$f(x_0, y_3) = (x_0^2 + y_3^2 + 5) = (0 + 1.5^2 + 5) = 7.25$$
  

$$f(x_0, y_4) = (x_0^2 + y_4^2 + 5) = (0 + 2^2 + 5) = 9$$

### ...Contd

#### 2) $x_1$ =constant

$$f(x_1, y_0) = (x_1^2 + y_0^2 + 5) = (0.5^2 + 0^2 + 5) = 5.25$$
  

$$f(x_1, y_1) = (x_1^2 + y_1^2 + 5) = (0.5^2 + 0.5^2 + 5) = 5.5$$
  

$$f(x_1, y_2) = (x_1^2 + y_2^2 + 5) = (0.5^2 + 1^2 + 5) = 6.25$$
  

$$f(x_1, y_3) = (x_1^2 + y_3^2 + 5) = (0.5^2 + 1.5^2 + 5) = 7.5$$
  

$$f(x_1, y_4) = (x_1^2 + y_4^2 + 5) = (0.5^2 + 2^2 + 5) = 9.25$$

3)  $x_2$ =constant

$$f(x_2, y_0) = (x_2^2 + y_0^2 + 5) = (1^2 + 0^2 + 5) = 6$$
  

$$f(x_2, y_1) = (x_2^2 + y_1^2 + 5) = (1^2 + 0.5^2 + 5) = 6.25$$
  

$$f(x_2, y_2) = (x_2^2 + y_2^2 + 5) = (1^2 + 1^2 + 5) = 7$$
  

$$f(x_2, y_3) = (x_2^2 + y_3^2 + 5) = (1^2 + 1.5^2 + 5) = 8.25$$
  

$$f(x_2, y_4) = (x_2^2 + y_4^2 + 5) = (1^2 + 2^2 + 5) = 10$$

### ...Contd

4)  $x_3$ =constant  $f(x_3, y_0) = (x_3^2 + y_0^2 + 5) = (1.5^2 + 0^2 + 5) = 7.25$  $f(x_3, y_1) = (x_3^2 + y_1^2 + 5) = (1.5^2 + 0.5^2 + 5) = 7.5$  $f(x_3, y_2) = (x_3^2 + y_2^2 + 5) = (1.5^2 + 1^2 + 5) = 8.25$  $f(x_3, y_3) = (x_3^2 + y_3^2 + 5) = (1.5^2 + 1.5^2 + 5) = 9.5$  $f(x_3, y_4) = (x_3^2 + y_4^2 + 5) = (1.5^2 + 2^2 + 5) = 11.25$ 5)  $x_4$ =constant  $f(x_4, y_0) = (x_4^2 + y_0^2 + 5) = (2^2 + 0^2 + 5) = 9$  $f(x_4, y_1) = (x_4^2 + y_1^2 + 5) = (2^2 + 0.5^2 + 5) = 9.25$  $f(x_4, y_2) = (x_4^2 + y_2^2 + 5) = (2^2 + 1^2 + 5) = 10$  $f(x_4, y_3) = (x_4^2 + y_3^2 + 5) = (2^2 + 1.5^2 + 5) = 11.25$  $f(x_4, y_4) = (x_4^2 + y_4^2 + 5) = (2^2 + 2^2 + 5) = 13$ 



### **Step 3: Make a table for all values of f(x,y)**

| x<br>y           | <i>x</i> <sub>0</sub> | $x_1 = x_0 + h$ | $x_2 = x_0 + 2h$ | $x_3 = x_0 + 3h$ | $x_4 = x_0 + 4h$ |
|------------------|-----------------------|-----------------|------------------|------------------|------------------|
| Уo               | $f(x_0, y_0)$         | $f(x_1, y_0)$   | $f(x_2, y_0)$    | $f(x_3, y_0)$    | $f(x_4, y_0)$    |
| $y_1 = y_0 + k$  | $f(x_0, y_1)$         | $f(x_1, y_1)$   | $f(x_2, y_1)$    | $f(x_3, y_1)$    | $f(x_4, y_1)$    |
| $y_2 = y_0 + 2k$ | $f(x_0, y_2)$         | $f(x_1, y_2)$   | $f(x_2, y_2)$    | $f(x_3, y_2)$    | $f(x_4, y_2)$    |
| $y_3 = y_0 + 3k$ | $f(x_0, y_3)$         | $f(x_1, y_3)$   | $f(x_2, y_3)$    | $f(x_3, y_3)$    | $f(x_4, y_3)$    |
| $y_4 = y_0 + 4k$ | $f(x_0, y_4)$         | $f(x_1, y_4)$   | $f(x_2, y_4) =$  | $f(x_3, y_4)$    | $f(x_4, y_4)$    |



| x<br>y | 0    | 0.5                   | 1      | 1.5                   | 2     |
|--------|------|-----------------------|--------|-----------------------|-------|
| 0      | 5    | 5.25                  | 6      | 7.25                  | 9     |
| 0.5    | 5.25 | A <sub>1</sub><br>5.5 | ► 6.25 | A <sub>2</sub><br>7.5 | 9.25  |
| 1      | 6    | 6.25                  | 7      | 8.25                  | 10    |
| 1.5    | 7.25 | 7.5                   | 8.25   | 9.5                   | 11.25 |
| 2      | 9    | 9.25                  | 10     | 11.25                 | 13    |



Step 4: Calculate the area under the curve by Simpson's 1/3<sup>rd</sup> rule As per Simpson's  $1/3^{rd}$  rule area  $A_1$  is given by  $A_{1} = \left| \sum f(x_{i}, y_{i}) + 4 \sum f(x_{i}, y_{i}) + 16 \sum f(x_{i}, y_{i}) \right|$ Square terms Rhombus terms Remaining terms  $A_1$  $= \left[ \left( f(x_0, y_0) + f(x_2, y_0) + f(x_2, y_2) + f(x_0, y_2) \right) + 4 \left( f(x_1, y_0) + f(x_2, y_1) + f(x_1, y_2) + f(x_0, y_1) \right) + 16 f(x_1, y_1) \right]$  $A_1 = [(5 + 6 + 7 + 6) + 4(5.25 + 6.25 + 6.25 + 5.25) + 16(5.5)]$  $A_1 = 204$ 



For calculating area  $A_2$ , the terms in the 3<sup>rd</sup> column are repeated  $A_2$ =  $[(f(x_2, y_0) + f(x_4, y_0) + f(x_4, y_2) + f(x_2, y_2))$ +  $4(f(x_3, y_0) + f(x_4, y_1) + f(x_3, y_2) + f(x_2, y_1)) + 16f(x_3, y_1)]$ 

$$A_2 = [(6+9+10+7) + 4(7.25+9.25+8.25+6.25) + 16(7.5)]$$

$$A_2 = 276$$



For calculating area  $A_3$ , the terms in the 3<sup>rd</sup> row are repeated  $A_3$ =  $[(f(x_0, y_2) + f(x_2, y_2) + f(x_2, y_4) + f(x_0, y_4))$ +  $4(f(x_1, y_2) + f(x_2, y_3) + f(x_1, y_4) + f(x_0, y_3)) + 16f(x_1, y_3)]$ 

 $A_3 = [(6+7+10+9) + 4(6.25+8.25+9.25+7.25) + 16(7.5)]$ 

$$A_3 = 276$$

Λ



# For calculating area $A_4$ , the terms in the 3<sup>rd</sup> row and 3<sup>rd</sup> column are repeated

$$= \left[ \left( f(x_2, y_2) + f(x_4, y_2) + f(x_4, y_4) + f(x_2, y_4) \right) \\ + 4 \left( f(x_3, y_2) + f(x_4, y_3) + f(x_3, y_4) + f(x_2, y_3) \right) + 16 f(x_3, y_3) \right]$$

$$A_4 = [(7 + 10 + 13 + 10) + 4(8.25 + 11.25 + 11.25 + 8.25) + 16(9.5)]$$

$$A_4 = 348$$



The total area is given by  $A = \frac{h}{3} \frac{k}{3} [A_1 + A_2 + A_3 + A_4]$ 

$$A = \frac{0.5}{3} \frac{0.5}{3} [204 + 276 + 276 + 348]$$

A = 30.6666

# Problems on Simpson's 1/3<sup>rd</sup> Rule

- 1. Find  $\int_0^1 \int_0^1 (e^{x+2y}) dx dy$  using Simpson's 1/3<sup>rd</sup> rule take h=k=0.5.
- 2. Find double integral of f(x, y) = 2x+y+1 for x=0 to 2 and y=0 to 2 with step size for both x and y as 1 by using Simpson's  $1/3^{rd}$  rule .
- 3. Evaluate  $\int_{6}^{14} \int_{1}^{5} \left(\frac{x+xy}{2y}\right) dx dy$  by Simpson's 1/3<sup>rd</sup> rule. Take number of strips for x and y equal to 4.
- 4. Evaluate  $\int_{6}^{14} \int_{1}^{5} (x y + 1) dx dy$  using Simpson's 1/3<sup>rd</sup> rule with number of strips for x and y equal to 4.

### **Reference Books**

1. Steven C. Chapra, Raymond P. Canale, Numerical Methods for Engineers, 4/e, Tata McGraw Hill Editions

2. Dr. B. S. Garewal, Numerical Methods in Engineering and Science, Khanna Publishers,.

3. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientist, Tata Mc-Graw Hill Publishing Co-Ltd

4. Rao V. Dukkipati, Applied Numerical Methods using Matlab, New Age International Publishers

### **Reference Books**



5. Gerald and Wheatley, Applied Numerical Analysis, Pearson Education Asia

- 6. E. Balagurusamy, Numerical Methods, Tata McGraw Hill
- 7. P. Thangaraj, Computer Oriented Numerical Methods, PHI
- 8. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI.

Thank You

Numerical Integration (Simpson's 1/3<sup>rd</sup> Rule)

Compiled by

Dr. Shyam Arjun Sonawane Associate Professor, Mechanical Engineering Government College of Engineering & Research, Avasari (Kh)

# What is Integration ?

• The process of measuring the area under a function plotted on a graph.

$$I = \int_{a}^{b} f(x) dx$$

- Where:
- *f*(*x*) is the integrand
- a= lower limit of integration
- b= upper limit of integration





• Where

•  $\Delta y_0 = y_1 - y_0$ ,  $\Delta^2 y_0 = y_2 - 2y_1 + y_0$ ,  $\Delta^3 y_0 = y_3 - 3y_2 + 3y_1 - y_0$ 

The curve which bounds each strip is approximated as a parabola (second degree polynomial). The Newton-Cotes formula for n=2 becomes  $I = nh\left[y_0 + \frac{n}{2}\Delta y_0 + \frac{n(2n-3)}{12}\Delta^2 y_0\right]$  $A = 2h \left[ y_0 + \frac{2}{2} (y_1 - y_0) + \frac{2(2x2 - 3)}{12} (y_2 - 2y_1 + y_0) \right]$   $A = \frac{h}{3} [y_0 + 4y_1 + y_2]$ 



Consider a curve as shown in figure which is divided in n number of strips and joined by a parabola. Let  $A_1, A_2, A_3, \dots, A_n$  be the area under each  $f_1 f_2 f_3 f_4$ strip h h b subsubint. 1 int. 2 Area under 1<sup>st</sup> strip,  $A_1 = \frac{h}{3} [y_0 + 4y_1 + y_2]$ Area under 2<sup>nd</sup> strip,  $A_2 = \frac{h}{3} [y_2 + 4y_3 + y_4]$ 



Area under n<sup>th</sup> strip, 
$$A_n = \frac{h}{3}[y_{n-2} + 4y_{n-1} + y_n]$$

• Total area under the curve is  $A = A_1 + A_2 + A_3 + \dots + A_n$ 

$$A = \frac{h}{3} [y_0 + 4y_1 + y_2] + \frac{h}{3} [y_2 + 4y_3 + y_4] + \dots + \frac{h}{3} [y_{n-2} + 4y_{n-1} + y_n]$$

$$A = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$$



$$A = \frac{h}{3} [(y_0 + y_n) + 4(odd \ terms \ of \ y) + 2(even \ terms \ of \ y)]$$

Note: For using Simpsons 1/3<sup>rd</sup> Rule, the number of strips (n) should be multiple of two.

The above equation is used to calculate area under the curve by Simpsons  $1/3^{rd}$  Rule.



**Example:** Use Simpson's  $1/3^{rd}$  rule to estimate integration  $\int_{1}^{2} \left(\frac{e^{x}}{x}\right) dx$ . **Solution:**  $f(x) = \left(\frac{e^{x}}{x}\right)$ , initial limit  $x_{0}$ =1, final limit  $x_{n}$ =2, Let n=6  $h = \left(\frac{x_{n}-x_{0}}{n}\right) = \left(\frac{2-1}{6}\right) = 0.1667$ 

Step 1: Calculate the corresponding values of x wrt h  $x_0 = 1$   $x_1 = x_0 + h = 1 + 0.1667 = 1.1667$   $x_2 = x_0 + 2h = 1 + 2x \ 0.1667 = 1.3333$  $x_3 = x_0 + 3h = 1 + 3x \ 0.1667 = 1.5$ 

### ...Contd

 $x_4 = x_0 + 4h = 1 + 4x 0.1667 = 1.6667$ 

 $x_5 = x_0 + 5h = 1 + 5x 0.1667 = 1.8333$ 

 $x_6 = x_0 + 6h = 1 + 6x 0.1667 = 2$ 

Step 2: Calculate the corresponding values of y wrt x

$$y_{0} = \frac{e^{x_{0}}}{x_{0}} = \frac{e^{1}}{\frac{1}{1}} = 2.7182$$

$$y_{1} = \frac{e^{x_{1}}}{x_{1}} = \frac{e^{1.1667}}{\frac{1.1667}{1.1667}} = 2.7525$$

$$y_{2} = \frac{e^{x_{2}}}{x_{2}} = \frac{e^{1.3333}}{\frac{1.3333}{1.3333}} = 2.8452$$

$$y_{3} = \frac{e^{x_{3}}}{x_{3}} = \frac{e^{1.5}}{\frac{1.5}{1.5}} = 2.9877$$

$$y_4 = \frac{e^{x_4}}{x_4} = \frac{e^{1.6667}}{1.6667} = 3.1767$$
$$y_5 = \frac{e^{x_5}}{x_5} = \frac{e^{1.8333}}{1.8333} = 3.4116$$
$$y_6 = \frac{e^{x_6}}{x_6} = \frac{e^2}{2} = 3.6945$$

Step 3: Calculate the area under the curve by Simpson's 1/3<sup>rd</sup> rule

$$A = \frac{h}{3} [(y_0 + y_6) + 4(y_1 + y_3 + y_5) + 2(y_2 + y_4)]$$
  

$$A = \frac{0.1667}{3} [(2.7182 + 3.6945) + 4(2.7525 + 2.9877 + 3.4116) + 2(2.8452 + 3.1767)]$$

$$\int_{1}^{2} \left(\frac{e^{x}}{x}\right) dx = 3.0597$$

# Problems on Simpson's 1/3<sup>rd</sup> Rule

- 1. Evaluate  $\int_0^{0.8} (log_e(x+1) + \sin(2x)) dx$  where x is in radians using Simpson's  $1/3^{rd}$  rule by dividing entire interval in 8 strips.
- 2. The velocity of car running on a straight road at the interval of 2 minutes is given below. Find the distance covered by the car using Simpson's 1/3<sup>rd</sup> rule.

| Time(min)        | 0 | 2  | 4  | 6  | 8  | 10 | 12 |
|------------------|---|----|----|----|----|----|----|
| Velocity (km/hr) | 0 | 22 | 30 | 27 | 18 | 7  | 0  |

3. The velocity V (km/hr) of a vehicle which starts from rest is given at fixed interval of time 't' (min) as follows. Estimate approximately the distance covered in 20 minutes.

| Time(min) | 2  | 4  | 6  | 8  | 10 | 12 | 14 | 16 | 18 | 20 |
|-----------|----|----|----|----|----|----|----|----|----|----|
| V (km/hr) | 10 | 18 | 25 | 29 | 32 | 20 | 11 | 5  | 2  | 0  |

# Problems on Simpson's 1/3<sup>rd</sup> Rule ...Contd

4. A circular shaft having one meter length has varying radius 'r' as follows. An axial pule of 300 KN is applied at one end of the shaft whose modulus of elasticity is  $200x10^9$  N/m<sup>2</sup>. The axial elongation of the shaft ( $\Delta x$ ) is given by  $\Delta x = (P/E) \int_0^1 (1/A) dx$  where A=cross sectional area of shaft. Determine elongation of shaft over the entire length by Simpson's  $1/3^{rd}$  rule.

| x (m) | 0    | 0.25   | 0.50   | 0.75   | 1.00   |
|-------|------|--------|--------|--------|--------|
| r (m) | 1.00 | 0.9896 | 0.9589 | 0.9089 | 0.8415 |

- 5. Gas is expanded according to law  $PV^{1.3} = C$  from the pressure of 10 N/m2. Assuming initial volume of gas as 1 m<sup>3</sup> and final volume as 7 m<sup>3</sup>. Calculate work done using Simpson's 1/3<sup>rd</sup> rule. Divide volume in 6 equal strips.
- 6. The data listed in table gives measurements of heat flux q at the surface of a solar collector. Estimate the total heat absorbed by a  $2\times10^5$  cm<sup>2</sup> collector panel during 14 hours period. The panel has an absorption efficiency  $\varepsilon$ =42%. The total heat absorbed is given by  $H = \varepsilon \int_0^t q \cdot A \cdot dt$  where A is area, q is heat flux and t is time.

| t (hr)     | 0    | 1    | 2    | 3    | 4    | 6    | 8    | 11   | 14   |
|------------|------|------|------|------|------|------|------|------|------|
| q (N/cm²hr | 0.05 | 1.72 | 5.23 | 6.38 | 7.86 | 8.05 | 8.03 | 5.82 | 0.24 |

# Problems on Simpson's 1/3<sup>rd</sup> Rule ...Contd

7. Find out  $\int_{1}^{2.2} y dx$  using following table by Simpson's 1/3<sup>rd</sup> rule.

| X | 1 | 1.1 | 1.2 | 1.4 | 1.6  | 1.9  | 2.2 |
|---|---|-----|-----|-----|------|------|-----|
| У | 3 | 4.2 | 5.8 | 10  | 14.5 | 25.1 | 40  |

- 8. Evaluate  $\int_0^4 e^x dx$  using Simpson's 1/3<sup>rd</sup> rule for four strips.
- 9. Evaluate  $\int_{1}^{4} (e^{x} x^{3} 2x + 1) dx$  using Simpson's 1/3<sup>rd</sup> rule taking 6 divisions.

10. Evaluate 
$$\int_0^1 \left(\frac{\sin x}{x}\right) dx$$
 using Simpson's 1/3<sup>rd</sup> rule with h=1/6.

### Problems on Simpson's 1/3<sup>rd</sup> Rule ...Contd

11. Evaluate  $\int_0^{0.8} (0.2 + 25x - 200x^2 + 675x^3 - 900x^4) dx$  by using Simpson's 1/3<sup>rd</sup> rule using 4 intervals.

### **Reference Books**

1. Steven C. Chapra, Raymond P. Canale, Numerical Methods for Engineers, 4/e, Tata McGraw Hill Editions

2. Dr. B. S. Garewal, Numerical Methods in Engineering and Science, Khanna Publishers,.

3. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientist, Tata Mc-Graw Hill Publishing Co-Ltd

4. Rao V. Dukkipati, Applied Numerical Methods using Matlab, New Age International Publishers
#### **Reference Books**



5. Gerald and Wheatley, Applied Numerical Analysis, Pearson Education Asia

- 6. E. Balagurusamy, Numerical Methods, Tata McGraw Hill
- 7. P. Thangaraj, Computer Oriented Numerical Methods, PHI
- 8. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI.

Thank You

Numerical Integration (Simpson's 3/8<sup>th</sup> Rule)

Compiled by

Dr. Shyam Arjun Sonawane Associate Professor, Mechanical Engineering Government College of Engineering & Research, Avasari (Kh)

### What is Integration ?

• The process of measuring the area under a function plotted on a graph.

$$I = \int_{a}^{b} f(x) dx$$

- Where:
- *f*(*x*) is the integrand
- a= lower limit of integration
- b= upper limit of integration





• Where

•  $\Delta y_0 = y_1 - y_0$ ,  $\Delta^2 y_0 = y_2 - 2y_1 + y_0$ ,  $\Delta^3 y_0 = y_3 - 3y_2 + 3y_1 - y_0$ 

The curve which bounds each strip is approximated as a cubic curve (third degree polynomial). The Newton-Cotes formula for n=3 becomes  $I = nh \left| y_0 + \frac{n}{2} \Delta y_0 + \frac{n(2n-3)}{12} \Delta^2 y_0 + \frac{n(n-2)}{24} \Delta^3 y_0 \right|$ Area under the curve is AA 1.5 2.5  $= 3h \left| y_0 + \frac{3}{2}(y_1 - y_0) + \frac{3(2x^3 - 3)}{12}(y_2 - 2y_1 + y_0) + \frac{3(3 - 2)}{24}(y_3 - 2y_1 + y_0) + \frac{3(3 - 2)}{24}(y_3 - 2y_1 - y_0) + \frac{3(3 - 2)}{24}(y_1 - y_0) + \frac{3(3 - 2)}{24}(y_$  $-3y_2 + 3y_1 - y_0)$  $A = \frac{3h}{8} [y_0 + 3y_1 + 3y_2 + y_3]$ 

Area



0.6 0.8

Consider a curve as shown in figure which is divided in n number of strips and joined by a cubic curve. 3  $x_9=b$ 2.5  $a = x_0 \quad x_1$ Let  $A_1, A_2, A_3, \dots, A_n$  be the area under  $\chi_8$ Х2 2 Х3 X7 Each strip 1.5  $\chi_4$ 

Area under 1<sup>st</sup> strip, 
$$A_1 = \frac{3h}{8} [y_0 + 3y_1 + 3y_2 + y_3]$$
  
Area under 2<sup>nd</sup> strip,  $A_2 = \frac{3h}{8} [y_3 + 3y_4 + 3y_5 + y_6]$ 



Area under n<sup>th</sup> strip,  $A_n = \frac{3h}{8} [y_{n-3} + 3y_{n-2} + 3y_{n-1} + y_n]$ • Total area under the curve is  $A = A_1 + A_2 + A_3 + \dots + A_n$  $A = \frac{3h}{8} [y_0 + 3y_1 + 3y_2 + y_3] + \frac{3h}{8} [y_3 + 3y_4 + 3y_5 + y_6] + \dots + \frac{3h}{8} [y_{n-3} + 3y_{n-2} + 3y_{n-1} + y_n]$ 

$$A = \frac{3h}{8} [(y_0 + y_n) + 2(y_3 + y_6 + \dots + 2y_{n-3}) + 3(y_1 + y_2 + y_4 \dots + y_{n-2} + y_{n-1})]$$



 $A = \frac{3h}{8} [(y_0 + y_n) + 2(y \text{ terms which are multiple of } 3) + 3(remaining \text{ terms of } y)]$ 

Note: For using Simpsons 3/8<sup>th</sup> Rule, the number of strips (n) should be multiple of three.

The above equation is used to calculate area under the curve by Simpsons 3/8<sup>th</sup> Rule.



**Example:** Evaluate  $\int_0^1 (\frac{sinx}{2+3sinx}) dx$  using Simpson's 3/8<sup>th</sup> Rule take 6 strips. **Solution:**  $f(x) = (\frac{sinx}{2+3sinx})$ , initial limit  $x_0=0$ , final limit  $x_n=1$ , n=6  $h = (\frac{x_n - x_0}{n}) = (\frac{1-0}{6}) = \frac{1}{6}$ 

Note:- Keep the calculator in radian mode since trignometric function

Step 1: Calculate the corresponding values of x wrt h

$$x_0 = 0$$
  

$$x_1 = x_0 + h = 0 + 1/6 = 1/6$$
  

$$x_2 = x_0 + 2h = 0 + 2(1/6) = 1/3$$
  

$$x_3 = x_0 + 3h = 0 + 3(1/6) = 1/2$$

#### ...Contd

- $x_4 = x_0 + 4h = 0 + 4(1/6) = 2/3$
- $x_5 = x_0 + 5h = 0 + 5(1/6) = 5/6$
- $x_6 = x_0 + 6h = 0 + 6(1/6) = 1$

 $\frac{\text{Step 2: Calculate the corresponding values of y wrt x}}{y_0 = \frac{\sin x_0}{2 + 3\sin x_0} = \frac{\sin 0}{2 + 3\sin 0} = 0$   $y_1 = \frac{\sin x_1}{2 + 3\sin x_1} = \frac{\sin(\frac{1}{6})}{2 + 3\sin(\frac{1}{6})} = 0.06641$   $y_2 = \frac{\sin x_2}{2 + 3\sin x_2} = \frac{\sin(\frac{1}{3})}{2 + 3\sin(\frac{1}{3})} = 0.1097$  $y_3 = \frac{\sin x_3}{2 + 3\sin x_3} = \frac{\sin(\frac{1}{2})}{2 + 3\sin(\frac{1}{2})} = 0.1394$ 

$$y_{4} = \frac{\sin x_{4}}{2 + 3\sin x_{4}} = \frac{\sin(\frac{2}{3})}{2 + 3\sin(\frac{2}{3})} = 0.1604$$
$$y_{5} = \frac{\sin x_{5}}{2 + 3\sin x_{5}} = \frac{\sin(\frac{5}{6})}{2 + 3\sin(\frac{5}{6})} = 0.1753$$
$$y_{6} = \frac{\sin x_{6}}{2 + 3\sin x_{6}} = \frac{\sin(1)}{2 + 3\sin(1)} = 0.1859$$

Step 3: Calculate the area under the curve by Simpson's 3/8<sup>th</sup> Rule

$$A = \frac{3h}{8} [(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2(y_3)]$$

$$A = \frac{3(\frac{1}{6})}{8} [(0 + 0.1859) + 3(0.06641 + 0.1097 + 0.1604 + 0.1753) + 2(0.1394)]$$

$$\int_0^1 (\frac{sinx}{2+3sinx}) dx = 0.1250$$

#### Problems on Simpson's 3/8<sup>th</sup> Rule

- 1. Evaluate  $\int_{1}^{4} (4x 1) dx$  using Simpson's 3/8<sup>th</sup> rule using 6 strips.
- 2. Find the integration of  $\int_0^{\pi} (4 + 2sinx) dx$  using Simpson's 3/8<sup>th</sup> rule using 6 strips.
- 3. Find the integration of  $\int_0^{1.5} (x^3 3x^2 + 6x + 8) dx$  using Simpson's 3/8<sup>th</sup> rule using 3 strips.
- 4. Find the integration of  $\int_{\pi}^{4\pi} \left( \frac{\sin x \cdot \log_e x}{\cos x} \right) dx$  using Simpson's 3/8<sup>th</sup> rule using 3 strips.

### Problems on Simpson's 3/8<sup>th</sup> Rule ...Contd

- 5. Evaluate  $\int_0^{\pi} \left( \frac{\sin^2 x}{e^x + \cos x} \right) dx$  using Simpson's 3/8<sup>th</sup> rule take 6 strips.
- 6. A body is in the form of a solid of revolution. The diameter D in cms of its section at distance x cm from one end is given below. Estimate volume of the solid.

| x | 0 | 2.5 | 5.0 | 7.5  | 10.0 | 12.5 | 15.0 |
|---|---|-----|-----|------|------|------|------|
| D | 5 | 5.5 | 6.0 | 6.75 | 6.25 | 5.5  | 4.0  |

7. The table below shows temperature as function of time. use Simpson's  $3/8^{\text{th}}$  rule to estimate  $\int_{1}^{7} f(t) dt$ .

| t | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|---|----|----|----|----|----|----|----|
| Т | 81 | 75 | 80 | 83 | 78 | 70 | 60 |

## Problems on Simpson's 3/8<sup>th</sup> Rule ...Contd

 Using the following data calculate the work done by stretching the spring that has a spring constant of K=300 N/m from x=0 to x=0.3 m. Use Simpson's 1/3<sup>rd</sup> and 3/8<sup>th</sup> rule.

| F(10 <sup>3</sup> N) | 0 | 0.01 | 0.028 | 0.046 | 0.063 | 0.082 | 0.11 |
|----------------------|---|------|-------|-------|-------|-------|------|
| x, m                 | 0 | 0.05 | 0.10  | 0.15  | 0.20  | 0.25  | 0.30 |

#### **Reference Books**

1. Steven C. Chapra, Raymond P. Canale, Numerical Methods for Engineers, 4/e, Tata McGraw Hill Editions

2. Dr. B. S. Garewal, Numerical Methods in Engineering and Science, Khanna Publishers,.

3. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientist, Tata Mc-Graw Hill Publishing Co-Ltd

4. Rao V. Dukkipati, Applied Numerical Methods using Matlab, New Age International Publishers

#### **Reference Books**



5. Gerald and Wheatley, Applied Numerical Analysis, Pearson Education Asia

- 6. E. Balagurusamy, Numerical Methods, Tata McGraw Hill
- 7. P. Thangaraj, Computer Oriented Numerical Methods, PHI
- 8. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI.

Thank You

# Numerical Double Integration (Trapezoidal Rule)

#### Compiled by

Dr. Shyam Arjun Sonawane Associate Professor, Mechanical Engineering Government College of Engineering & Research, Avasari (Kh)

#### **Double Integration**

The double integration can be written as

$$A = \int_{x_0}^{x_n} \int_{y_0}^{y_n} f(x, y) dx \, dy$$

The value of integration can be found by two successive integration in x and y directions (by considering one variable at a time). In this case, the interval  $x_0$  to  $x_n$  is divided into 'n' equal subintervals with step size 'h' whereas the interval  $y_0$  to  $y_n$  is divided into 'm' equal subintervals with step size 'k'.

$$h = \frac{x_n - x_0}{n}$$
 and  $k = \frac{y_n - y_0}{m}$ 

The double integration can be found by using (1) Trapezoidal Rule (2) Simpson's Rule

Double integration is given by  

$$A = \int_{x_0}^{x_n} \int_{y_0}^{y_n} f(x, y) dx dy$$

$$A = \int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x, y) dx dy$$

$$A = \int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x, y) dx dy$$

$$A = \int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x, y) dx dy$$
(a)  
Initially integrating the above equation *w.r.t.* x  

$$A = \int_{y_0}^{y_1} \frac{h}{2} [f(x_0, y) + f(x_1, y)] dy$$
Now integrating the above equation *w.r.t.* y  

$$A = \frac{h}{2} \frac{k}{2} [f(x_0, y_0) + f(x_1, y_0) + f(x_0, y_1) + f(x_1, y_1)]$$



From figure (a)

$$A = \frac{hk}{4} [Sum \ of \ \_A \ square \ terms]$$

For *n* number of strips prepare a table as follows

| x<br>y            | <i>x</i> <sub>0</sub> | $x_1 = x_0 + h$ | $x_2 = x_0 + 2h$ | $x_3 = x_0 + 3h$ | $x_4 = x_0 + 4h$ |
|-------------------|-----------------------|-----------------|------------------|------------------|------------------|
| ${\mathcal{Y}}_0$ | $f(x_0, y_0)$         | $f(x_1, y_0)$   | $f(x_2, y_0)$    | $f(x_3, y_0)$    | $f(x_4, y_0)$    |
| $y_1 = y_0 + k$   | $f(x_0, y_1)$         | $f(x_1, y_1)$   | $f(x_2, y_1)$    | $f(x_3, y_1)$    | $f(x_4, y_1)$    |
| $y_2 = y_0 + 2k$  | $f(x_0, y_2)$         | $f(x_1, y_2)$   | $f(x_2, y_2)$    | $f(x_3, y_2)$    | $f(x_4, y_2)$    |
| $y_3 = y_0 + 3k$  | $f(x_0, y_3)$         | $f(x_1, y_3)$   | $f(x_2, y_3)$    | $f(x_3, y_3)$    | $f(x_4, y_3)$    |
| $y_4 = y_0 + 4k$  | $f(x_0, y_4)$         | $f(x_1, y_4)$   | $f(x_2, y_4)$    | $f(x_3, y_4)$    | $f(x_4, y_4)$    |



The total area is given by  $A = \frac{h}{2} \frac{k}{2} \left[ \sum f(x_i, y_i) + 2 \sum f(x_i, y_i) + 4 \sum f(x_i, y_i) \right]$ Corner terms Terms at edges Interior terms  $= \frac{h}{2} \frac{k}{2} \left\{ \left[ f(x_0, y_0) + f(x_4, y_0) + f(x_0, y_4) + f(x_4, y_4) \right] + 2 \left[ f(x_1, y_0) + f(x_2, y_0) + f(x_3, y_0) + f(x_4, y_1) + f(x_4, y_2) + f(x_4, y_3) + f(x_1, y_4) + f(x_2, y_4) + f(x_3, y_4) + f(x_0, y_1) + f(x_0, y_2) + f(x_0, y_3) \right] + 4 \left[ f(x_1, y_1) + f(x_2, y_1) + f(x_3, y_1) + f(x_1, y_2) + f(x_2, y_2) + f(x_3, y_2) + f(x_1, y_3) + f(x_2, y_3) + f(x_3, y_3) \right] \right\}$ 

The above equation gives the total area under the curve for double integration by Trapezoidal rule.



<u>Alternate Method:-</u> Prepare a table for n number of strips as follows:

| y x              | <i>x</i> <sub>0</sub> | $x_1 = x_0 + h$ | $x_2 = x_0 + 2h$ | $x_3 = x_0 + 3h$ |
|------------------|-----------------------|-----------------|------------------|------------------|
| ${\mathcal Y}_0$ | $f(x_0, y_0)$         | $f(x_1, y_0)$   | $f(x_2, y_0)$    | $f(x_3, y_0)$    |
| $y_1 = y_0 + k$  | $f(x_0, y_1)$         | $f(x_1, y_1)$   | $f(x_2, y_1)$    | $f(x_3, y_1)$    |
| $y_2 = y_0 + 2k$ | $f(x_0, y_2)$         | $f(x_1, y_2)$   | $f(x_2, y_2)$    | $f(x_3, y_2)$    |
| $y_3 = y_0 + 3k$ | $f(x_0, y_3)$         | $f(x_1, y_3)$   | $f(x_2, y_3)$    | $f(x_3, y_3)$    |



**Alternate Method:-**

Total area is given by

 $A = \frac{h}{2} \frac{k}{2} [sum of squares A_{1}terms + sum of squares A_{2}terms + sum of squares A_{3}terms + sum of squares A_{4}terms + sum of squares A_{5}terms + sum of squares A_{6}terms + sum of squares A_{7}terms + sum of squares A_{8}terms + sum of squares A_{9}terms]$ 



**Example:** Evaluate  $\int_0^1 \int_0^1 (e^{x+y}) dx dy$  using Trapezoidal rule. Take h=k=0.5 **Solution:**  $f(x, y) = (e^{x+y})$ ,  $x_0=0$ ,  $x_n=1$ ,  $y_0=0$ ,  $y_m=1$ , h=k=0.5**Step 1: Calculate the corresponding values of x and y wrt h & k** 

$$x_0 = 0$$
  

$$x_1 = x_0 + h = 0 + 0.5 = 0.5$$
  

$$x_2 = x_0 + 2h = 0 + 2(0.5) = 1.0$$
  

$$y_0 = 0$$
  

$$y_1 = y_0 + k = 0 + 0.5 = 0.5$$
  

$$y_2 = y_0 + 2k = 0 + 2(0.5) = 1.0$$



Step 2: Calculate the values of  $f(x_i, y_i)$ ,  $f(x, y) = (e^{x+y})$ 1)  $x_0$ =constant

$$f(x_0, y_0) = (e^{x_0 + y_0}) = (e^{0+0}) = 1$$
  
$$f(x_0, y_1) = (e^{x_0 + y_1}) = (e^{0+0.5}) = 1.6487$$
  
$$f(x_0, y_2) = (e^{x_0 + y_2}) = (e^{0+1}) = 2.7182$$

2)  $x_1$ =constant

$$f(x_1, y_0) = (e^{x_1 + y_0}) = (e^{0.5 + 0}) = 1.6487$$
  
$$f(x_1, y_1) = (e^{x_1 + y_1}) = (e^{0.5 + 0.5}) = 2.7182$$
  
$$f(x_1, y_2) = (e^{x_1 + y_2}) = (e^{0.5 + 1}) = 4.4816$$

#### ...Contd

2)  $x_2$ =constant

٠

$$f(x_2, y_0) = (e^{x_2 + y_0}) = (e^{1+0}) = 2.7182$$
  
$$f(x_2, y_1) = (e^{x_2 + y_1}) = (e^{1+0.5}) = 4.4816$$
  
$$f(x_2, y_2) = (e^{x_2 + y_2}) = (e^{1+1}) = 7.3890$$

#### Step 3: Make a table for all values of f(x,y)

| y x                   | <i>x</i> <sub>0</sub> | $x_1 = x_0 + h$ | $x_2 = x_0 + 2h$ |
|-----------------------|-----------------------|-----------------|------------------|
| <i>y</i> <sub>0</sub> | $f(x_0, y_0)$         | $f(x_1, y_0)$   | $f(x_2, y_0)$    |
| $y_1 = y_0 + k$       | $f(x_0, y_1)$         | $f(x_1, y_1)$   | $f(x_2, y_1)$    |
| $y_2 = y_0 + 2k$      | $f(x_0, y_2)$         | $f(x_1, y_2)$   | $f(x_2, y_2)$    |

#### ...Contd

| x<br>y | 0      | 0.5    | 1      |
|--------|--------|--------|--------|
| 0      | 1      | 1.6487 | 2.7182 |
| 0.5    | 1.6487 | 2.7182 | 4.4816 |
| 1      | 2.7182 | 4.4816 | 7.3890 |

#### Step 4: Calculate the area under the curve by Trapezoidal rule

 $A = \frac{h k}{2 2} \{ [f(x_0, y_0) + f(x_2, y_0) + f(x_0, y_2) + f(x_2, y_2)] + 2[f(x_1, y_0) + f(x_2, y_1) + f(x_1, y_2) + f(x_0, y_1)] + 4[f(x_1, y_1)] \}$  $A = \frac{0.5}{2} \frac{0.5}{2} \{ [1 + 2.7182 + 2.7182 + 7.3890] + 2[1.6487 + 4.4816 + 4.4816 + 1.6487] + 4[2.7182] \}$ 





$$A = 0.0625\{13.8254 + 24.5212 + 10.8721\}$$
$$A = 3.0762$$

#### Step 5: Calculate the area under the curve by alternate method





 $= \frac{h}{2} \frac{k}{2} [sum \ of \ squares \ A_1 terms + sum \ of \ squares \ A_2 terms$ +  $\overline{sum}$  of squares  $A_3$  terms + sum of squares  $A_4$  terms]  $= \frac{h k}{2 2} \{ [f(x_0, y_0) + f(x_1, y_0) + f(x_1, y_1) + f(x_0, y_1)] \\ + [f(x_1, y_0) + f(x_2, y_0) + f(x_2, y_1) + f(x_1, y_1)] + [f(x_0, y_1) + f(x_1, y_1) + f(x_1, y_2)] \\ + f(x_0, y_2)] + [f(x_1, y_1) + f(x_2, y_1) + f(x_2, y_2) + f(x_1, y_2)] \}$  $0.5\,0.5$  $=\frac{0.0}{2}\frac{0.0}{2}\left\{\left[1+1.6487+2.7182+1.6487\right]\right\}$  $+ [\overline{1.6487} + 2.7182 + 4.4816 + 2.7182] + [1.6487 + 2.7182 + 2.7182 + 4.4816]$ + [2.7182 + 4.4816 + 7.3890 + 4.4816]A = 3.0762

#### Problems on Trapezoidal Rule

- 1. Find the double integration of  $f(x, y) = x^2 + y^2 + 5$  for x=0 to 2 and y=0 to 2 taking increment in both x and y as 0.5 by using Trapezoidal rule.
- 2. Solve using Trapezoidal rule  $\int_0^1 \int_0^1 (x^2 y^2) dx dy$  taking step length in x and y as 0.25.
- 3. Use Trapezoidal rule to evaluate  $\int_0^1 \int_1^2 \left(\frac{2xy}{(1+x^2)(1+y^2)}\right) dxdy$ .
- 4. Find the double integration of f(x, y) = x+y for x=1 to 3 and y=0 to 2 with step size for both x and y as 2 by using Trapezoidal rule.

#### **Reference Books**

1. Steven C. Chapra, Raymond P. Canale, Numerical Methods for Engineers, 4/e, Tata McGraw Hill Editions

2. Dr. B. S. Garewal, Numerical Methods in Engineering and Science, Khanna Publishers,.

3. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientist, Tata Mc-Graw Hill Publishing Co-Ltd

4. Rao V. Dukkipati, Applied Numerical Methods using Matlab, New Age International Publishers

#### **Reference Books**



5. Gerald and Wheatley, Applied Numerical Analysis, Pearson Education Asia

- 6. E. Balagurusamy, Numerical Methods, Tata McGraw Hill
- 7. P. Thangaraj, Computer Oriented Numerical Methods, PHI
- 8. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI.

Thank You

# Numerical Integration (Trapezoidal Rule)

#### Compiled by

Dr. Shyam Arjun Sonawane Associate Professor, Mechanical Engineering

Government College of Engineering & Research, Avasari (Kh)
# What is Integration ?

• The process of measuring the area under a function plotted on a graph.

$$I = \int_{a}^{b} f(x) dx$$

- Where:
- *f*(*x*) is the integrand
- a= lower limit of integration
- b= upper limit of integration





• Where

•  $\Delta y_0 = y_1 - y_0$ ,  $\Delta^2 y_0 = y_2 - 2y_1 + y_0$ ,  $\Delta^3 y_0 = y_3 - 3y_2 + 3y_1 - y_0$ 

The curve which bounds each strip is approximated as a straight line(first degree polynomial). The Newton-Cotes formula for n=1 becomes

$$I = nh\left[y_0 + \frac{n}{2}\Delta y_0\right]$$

Area under the curve is

$$A = 1h \left[ y_0 + \frac{1}{2}(y_1 - y_0) \right]$$
$$A = \frac{h}{2} \left[ y_0 + y_1 \right]$$



## ...Contd

Consider a curve as shown in figure which is divided in n number of strips and joined by a straight line.  $\mathbf{y}_0^{\mathbf{i}} \mathbf{y}_l^{\mathbf{j}} \mathbf{y}_2^{\mathbf{j}}$ f(x) $\mathbf{Y}_i$ Let  $A_1, A_2, A_3, \dots, A_n$  be the area under each strip which is considered as a trapezoid b  $x_0 x_1 x_2$  $x_N$  $x_i$ Area under 1<sup>st</sup> strip,  $A_1 = \frac{h}{2}[y_0 + y_1]$ Area under 2<sup>nd</sup> strip,  $A_2 = \frac{h}{2}[y_1 + y_2]$ 



Area under n<sup>th</sup> strip, 
$$A_n = \frac{h}{2}[y_{n-1} + y_n]$$

• Total area under the curve is

$$A = A_1 + A_2 + A_3 + \dots + A_n$$
  

$$A = \frac{h}{2} [y_0 + y_1] + \frac{h}{2} [y_1 + y_2] + \dots + \frac{h}{2} [y_{n-1} + y_n]$$

 $A = \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$ 

The above equation is used to calculate area under the curve by trapezoidal rule.

### ...Contd

**Example:** Evaluate  $\int_0^3 (2x - x^2) dx$  taking 6 intervals by Trapezoidal rule. **Solution:**  $f(x) = (2x - x^2)$ , initial limit  $x_0=0$ , final limit  $x_n=3$ , n=6  $h = \left(\frac{x_n - x_0}{n}\right) = \left(\frac{3-0}{6}\right) = 0.5$ 

Step 1: Calculate the corresponding values of x wrt h

$$x_0 = 0$$
  

$$x_1 = x_0 + h = 0 + 0.5 = 0.5$$
  

$$x_2 = x_1 + h = 0.5 + 0.5 = 1.0$$
  

$$x_3 = x_2 + h = 1.0 + 0.5 = 1.5$$



$$x_4 = x_3 + h = 1.5 + 0.5 = 2.0$$
  

$$x_5 = x_4 + h = 2.0 + 0.5 = 2.5$$
  

$$x_6 = x_5 + h = 2.5 + 0.5 = 3.0$$

Step 2: Calculate the corresponding values of y wrt x  $y_0 = 2x_0 - x_0^2 = 2 \times 0 - 0^2 = 0$   $y_1 = 2x_1 - x_1^2 = 2 \times 0.5 - 0.5^2 = 0.75$   $y_2 = 2x_2 - x_2^2 = 2 \times 1 - 1^2 = 1$   $y_3 = 2x_3 - x_3^2 = 2 \times 1.5 - 1.5^2 = 0.75$  $y_4 = 2x_4 - x_4^2 = 2 \times 2 - 2^2 = 0$ 



$$y_5 = 2x_5 - x_5^2 = 2 \times 2.5 - 2.5^2 = -1.25$$
  
$$y_6 = 2x_6 - x_6^2 = 2 \times 3 - 3^2 = -3$$

Step 3: Calculate the area under the curve by Trapezoidal rule

$$A = \frac{h}{2} [(y_0 + y_6) + 2(y_1 + y_2 + y_3 + y_4 + y_5)]$$

$$A = \frac{0.5}{2} [(0 - 3) + 2(0.75 + 1 + 0.75 + 0 - 1.25)]$$

$$A = -0.125$$

$$\int_0^3 (2x - x^2) dx = -0.125$$

## Problems on Trapezoidal Rule

- 1. Find  $\int_0^6 (\frac{1}{1+x^2}) dx$  using Trapezoidal rule take four strip.
- 2. UseTrapezoidal rule with four strip to estmate the value of integral  $\int_0^2 \left(\frac{x}{\sqrt{2+x^2}}\right) dx$ .
- 3. Evaluate  $\int_{4}^{5} lnx \, dx$  using Trapezoidal rule, take h=02.
- Find the area under the curve on x axis. The curve passes through the following points (1,2), (1.5,2.4), (2, 2.7), (2.5, 2.8), (3,3), (3.5,2.6), (4,2.10).

# Problems on Trapezoidal Rule .....Contd

5. A function f(x) is described by following data. Find numerical integration of the function in limit 1 to 2.2 using trapezoidal rule.

| x    | 1     | 1.1   | 1.2   | 1.4   | 1.6    | 1.9    | 2.2    |
|------|-------|-------|-------|-------|--------|--------|--------|
| F(x) | 3.123 | 4.247 | 5.635 | 9.299 | 14.303 | 24.759 | 39.319 |

- 6. Find the integral I =  $\int_0^{\pi} (sinx) dx$  using Trapezoidal rule. Let h=  $\pi/6$ .
- 7. A curve is drawn to pass through the points given by the following table. Find the area under the curve using Trapezoidal rule.

| x | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 2   |
|---|---|-----|-----|-----|-----|-----|
| У | 2 | 2.2 | 2.7 | 2.8 | 3   | 2.6 |

8. Evaluate  $\int_{1}^{4} (3x^{2} + x - 1) dx$  by using Trapezoidal rule with 5 strips.

# Problems on Trapezoidal Rule



9. The total mass of the variable density rod is given by  $m = \int_{0}^{L} P(x)A_{c}(x) dx$ . Where m is mass, P(x) is density,  $A_{c}(x) = cross$  sectional area, x = d istance along the rod and L=total length of the rod. The following data is measured for a 10 m length rod. Determine the mass in kg using Trapezoidal rule to best possible accuracy.

| x, m                    | 0    | 2    | 3    | 4    | 6    | 8    | 10   |
|-------------------------|------|------|------|------|------|------|------|
| P g/cm <sup>2</sup>     | 4.00 | 3.95 | 3.89 | 3.80 | 3.60 | 3.41 | 3.30 |
| $A_c$ , cm <sup>2</sup> | 100  | 103  | 106  | 110  | 120  | 133  | 150  |

- 10. Find the interation of (4x + 2) in the limits 1 to 4 by Trapezoidal rule using 6 strips.
- 11. Find the integration of  $\frac{1}{1+x^2}$  in the limit 0 to 1 by Trapezoidal rule using 4 strips.
- 12. Evaluate  $\int_{1}^{4} (\sqrt{\sin x} + \cos x) dx$  by using Trapezoidal rule taking 8 divisions.

# Problems on Trapezoidal Rule .....Contd

13. Evaluate  $\int_{1}^{4} (e^{x} + x^{3} - 2x + 1) dx$  by using Trapezoidal rule taking 6 divisions.

14. Find the interation of  $\int_0^2 e^x sinx dx$  by Trapezoidal rule using 4 strips.

### **Reference Books**

1. Steven C. Chapra, Raymond P. Canale, Numerical Methods for Engineers, 4/e, Tata McGraw Hill Editions

2. Dr. B. S. Garewal, Numerical Methods in Engineering and Science, Khanna Publishers,.

3. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientist, Tata Mc-Graw Hill Publishing Co-Ltd

4. Rao V. Dukkipati, Applied Numerical Methods using Matlab, New Age International Publishers

### **Reference Books**



5. Gerald and Wheatley, Applied Numerical Analysis, Pearson Education Asia

- 6. E. Balagurusamy, Numerical Methods, Tata McGraw Hill
- 7. P. Thangaraj, Computer Oriented Numerical Methods, PHI
- 8. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI.

Thank You